Stable and Fast-Response Capacitive Humidity Sensors Based on a ZnO Nanopowder/PVP-RGO Multilayer

نویسندگان

  • Hui Yang
  • Qiangqiang Ye
  • Ruixue Zeng
  • Junkai Zhang
  • Lei Yue
  • Ming Xu
  • Zhi-Jun Qiu
  • Dongping Wu
چکیده

In this paper, capacitive-type humidity sensors were prepared by sequentially drop-coating the aqueous suspensions of zinc oxide (ZnO) nanopowders and polyvinyl pyrrolidone-reduced graphene oxide (PVP-RGO) nanocomposites onto interdigitated electrodes. Significant improvements in both sensitivity and linearity were achieved for the ZnO/PVP-RGO sensors compared with the PVP-RGO/ZnO, PVP-RGO, and ZnO counterparts. Moreover, the produced ZnO/PVP-RGO sensors exhibited rather small hysteresis, fast response-recovery time, and long-term stability. Based on morphological and structural analyses, it can be inferred that the excellent humidity sensing properties of the ZnO/PVP-RGO sensors may be attributed to the high surface-to-volume ratio of the multilayer structure and the supporting roles of the PVP-RGO nanocomposites. The results in this work hence provide adequate guidelines for designing high-performance humidity sensors that make use of the multilayer structure of semiconductor oxide materials and PVP-RGO nanocomposites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biochars as Innovative Humidity Sensing Materials

In this work, biochar-based humidity sensors were prepared by drop-coating technique. Polyvinylpyrrolidone (PVP) was added as an organic binder to improve the adhesion of the sensing material onto ceramic substrates having platinum electrodes. Two biochars obtained from different precursors were used. The sensors were tested toward relative humidity (RH) at room temperature and showed a respons...

متن کامل

ZnO Nanoparticles/Reduced Graphene Oxide Bilayer Thin Films for Improved NH3-Sensing Performances at Room Temperature

ZnO nanoparticles and graphene oxide (GO) thin film were deposited on gold interdigital electrodes (IDEs) in sequence via simple spraying process, which was further restored to ZnO/reduced graphene oxide (rGO) bilayer thin film by the thermal reduction treatment and employed for ammonia (NH3) detection at room temperature. rGO was identified by UV-vis absorption spectra and X-ray photoelectron ...

متن کامل

Paper as Active Layer in Inkjet-Printed Capacitive Humidity Sensors

An inkjet-printed relative humidity sensor based on capacitive changes which responds to different humidity levels in the environment is presented in this work. The inkjet-printed silver interdigitated electrodes configuration on the paper substrate allowed for the fabrication of a functional proof-of-concept of the relative humidity sensor, by using the paper itself as a sensing material. The ...

متن کامل

Fast Response and High Sensitivity ZnO/glass Surface Acoustic Wave Humidity Sensors Using Graphene Oxide Sensing Layer

We report ZnO/glass surface acoustic wave (SAW) humidity sensors with high sensitivity and fast response using graphene oxide sensing layer. The frequency shift of the sensors is exponentially correlated to the humidity change, induced mainly by mass loading effect rather than the complex impedance change of the sensing layer. The SAW sensors show high sensitivity at a broad humidity range from...

متن کامل

Ultrahigh humidity sensitivity of graphene oxide

Humidity sensors have been extensively used in various fields, and numerous problems are encountered when using humidity sensors, including low sensitivity, long response and recovery times, and narrow humidity detection ranges. Using graphene oxide (G-O) films as humidity sensing materials, we fabricate here a microscale capacitive humidity sensor. Compared with conventional capacitive humidit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017